
Background Discontinuous Galerkin method for buoyancy-driven �ow Cargo hold sample results 3D development Software design

Continuing progress of high-order accurate simulation tool for
cargo hold �res

Mark Lohry
Princeton University

FAA JUP
August 2016

Background Discontinuous Galerkin method for buoyancy-driven �ow Cargo hold sample results 3D development Software design

Outline

1 Background

2 Discontinuous Galerkin method for buoyancy-driven �ow

3 Cargo hold sample results

4 3D development

5 Software design

Background Discontinuous Galerkin method for buoyancy-driven �ow Cargo hold sample results 3D development Software design

Motivation

FAA requirement for alarms to go o� within 60 seconds of �re ignition.

Several di�erent detection methods are generally used together, e.g. temperature,
smoke/particulate, radiation, optical

Their e�ectiveness is determined by the dynamics of a particular �re and their
relative position.

Accurate prediction of �re-induced �ow in a cargo hold is a necessary �rst step to
predicting detection capabilities.

More reliable detection capabilities could potentially reduce false alarms.

Background Discontinuous Galerkin method for buoyancy-driven �ow Cargo hold sample results 3D development Software design

B707 cargo geometry

Experimental and computational data for B707 cargo �res available from work at
Sandia and FAA Tech center.

Current goal is to perform a direct comparison of those results with our new
solver.

Figure : B707 cargo hold geometry.

Background Discontinuous Galerkin method for buoyancy-driven �ow Cargo hold sample results 3D development Software design

Fire-induced �uid dynamics

Detailed simulation of the combustion process is expensive and unnecessary; the
large scale dynamics are primarily determined by the amount of heat release, its
position, and the geometry.

Commonly used models apply a heat source and input of reaction products (CO,
CO2, etc.)

Figure : Flow driven by an enclosed heat source.

Background Discontinuous Galerkin method for buoyancy-driven �ow Cargo hold sample results 3D development Software design

Cluttered geometry 2D

A real �re is unlikely to happen in an empty cargo hold.

Including some obstructions changes the �ow�eld considerably.

Figure : t = 20s after ignition.

Background Discontinuous Galerkin method for buoyancy-driven �ow Cargo hold sample results 3D development Software design

Simulation challenges

Simulating a single �re case is relatively straightforward, but of limited utility. There
are several uncertainties to address:

Initial position, size, and strength of a �re is unknown.

Cargo hold geometry varies considerably depending on contents.

Simulation needs:

Complex geometries: must handle complex boundary conditions accurately.

Fast: uncertainty quanti�cation will require a large number of simulations.

Accurate: must accurately simulate vorticity-dominated turbulent �ows for
transport prediction.

Background Discontinuous Galerkin method for buoyancy-driven �ow Cargo hold sample results 3D development Software design

Available tools

FDS: NIST's Fire Dynamics Simulator.

Pros:

Purpose-built for smoke and heat transport from �res using large eddy simulation.
Combustion and radiation models.
Built-in post-processing tools related to smoke transport.

Cons:

Handles complex boundaries with Cartesian cut cells: inaccurate for anything but
rectangles.

OpenFOAM

Pros:

Similar combustion and radiation models to FDS, with additional thermodynamic
models.
Handles arbitrary body-�tted meshes.
Wide array of LES models.

Cons:

Very slow for large cases.

Fluent

Pros:

Well known, full combustion and radiation modeling.
Handles arbitrary body-�tted meshes.
Wide array of LES models.

Cons:

Commercial

All limited to O(∆x2) accuracy.

Background Discontinuous Galerkin method for buoyancy-driven �ow Cargo hold sample results 3D development Software design

High order accurate CFD

Even very low intensity �res will have very complex �ow phenomena poorly
captured by low-order CFD methods.

Figure : Instability of smoke from a cigarette, Perry & Lim, 1978

Background Discontinuous Galerkin method for buoyancy-driven �ow Cargo hold sample results 3D development Software design

High order accurate CFD

Order of accuracy in �nite di�erences:

du

dx
≈

u(x + ∆x)− u(x)

∆x
+ O(∆x)

du

dx
≈

u(x)− u(x −∆x)

∆x
+ O(∆x)

du

dx
≈

u(x + ∆x)− u(x −∆x)

2∆x
+ O(∆x2)

(1)

Error scales like ∼ O(∆xn) for order n.

For a 1st order method, halving the grid spacing reduces error by ∼ 1/2.

For a 4th order method, halving the grid spacing reduces error by ∼ 1/16.

Background Discontinuous Galerkin method for buoyancy-driven �ow Cargo hold sample results 3D development Software design

High order accurate CFD

Figure : Generic error vs cost plot, Wang, 2007

Background Discontinuous Galerkin method for buoyancy-driven �ow Cargo hold sample results 3D development Software design

Discontinuous Galerkin discretization method

For a multi-dimensional conservation law

∂u(x, t)

∂t
+∇ · f(u(x, t), x, t) = 0 (2)

approximate u(x, t) by

u(x, t) ≈ uh(x, t) =

Np∑
i=1

uh(xi , t)li (x) =

Np∑
i=1

ûi (t)ψi (x) (3)

where li (x) is the multidimensional Lagrange interpolating polynomial de�ned by grid
points xi , Np is the number of nodes in the element, and ψi (x) is a local polynomial
basis.

Of the two equivalent approximations here, the �rst is termed nodal and the
second modal. i.e., uh represents values of u at discrete nodes with a
reconstruction based on Lagrange polynomials, and ûi represents
modes/coe�cients for reconstruction with the basis ψn.

Background Discontinuous Galerkin method for buoyancy-driven �ow Cargo hold sample results 3D development Software design

Discontinuous Galerkin discretization method

Substituting the approximation uh into the conservation law:

∂uh
∂t

+∇ · fh = 0

Integrate with a test function ψj , the same as used to represent the polynomial above,∫
V

∂uh
∂t

ψj dV +

∫
V

∇ · fhψj dV = 0

Integration by parts on the spatial component:∫
V

∂uh
∂t

ψj dV −
∫
V

∇ψj · fh dV +

∮
S

ψj f
?
h · n dS = 0

Using the modal representation, uh =
∑Np

i=1 ûi (t)ψi (x)∫
V

∂ûiψi

∂t
ψj dV −

∫
V

∇ψj · f̂iψi dV +

∮
S

ψj f̂
?
i ψi · n dS = 0

which gives the semi-discrete form of the classic modal DG method,

M̂ij

dûi

dt
=

∫
V

∇ψj · f̂iψi dV +

∮
S

ψj f̂
?
i φi · n dS

Here M is the mass matrix (identity for orthonormal bases), n the vector normal at an

element surface, and f̂? is a conservative �ux function at interfaces, equivalent to that
used in �nite volume methods.

Background Discontinuous Galerkin method for buoyancy-driven �ow Cargo hold sample results 3D development Software design

Discontinuous Galerkin discretization method

The modal coe�cients û can always be represented on nodal locations u through a
change of basis by the Vandermonde matrix,

V û = u

which turns the previous modal method into a nodal method. This code uses
unstructured tetrahedral elements in 3D with Legendre-Gauss-Lobatto nodes:

(a) Volume nodes for varying order, Hesthaven
& Warburton.

(b) N = 2 element surfaces; nodes are at line
intersections.

Background Discontinuous Galerkin method for buoyancy-driven �ow Cargo hold sample results 3D development Software design

Discretization method - solving the discretized equations

This ends up with a potentially very large system of ODEs to be solved:

du

dt
= f(u, u′, t)

Simplest method for integrating this system in time is the explicit (forward) Euler
method:

un+1 = un + ∆tf(u, u′, t)n

Unfortunately, explicit time-stepping for high-order DG is stable only for excessively
small ∆t,

∆t = O(
∆x

N2
)

where a mesh cell ∆x can be very small (boundary layers, small geometric features)
and N2 quickly grows large. For any engineering-scale problem, explicit methods are
unfeasible for use.

This requires the use of implicit time-stepping methods, e.g. 1st order backward
Euler:

un+1 = un + ∆tf(u, u′, t)n+1

where we now have a set of non-linear equations to solve for un+1. Typically we use
3rd order or higher time-accurate schemes.

Background Discontinuous Galerkin method for buoyancy-driven �ow Cargo hold sample results 3D development Software design

Discretization method - solving the discretized equations

Task is to solve the very large non-linear system at each time step:

F(u) = 0

Newton's method for this problem derives from a Taylor expansion (Knoll/Keyes
2004):

F(uk+1) = F(uk) + F′(uk)(uk+1 − uk)

resulting in a sequence of linear systems

J(uk)δuk = −F(uk), uk+1 = uk + δuk

for the Jacobian J.

The linear system J(uk)δuk = −F(uk) is straighforward enough to write, but for
these methods J is a very large sparse matrix which is prohibitively expensive to
actually compute and store.

A mesh of 100,000 4th order cells requires roughly 250GB of memory to store in
64-bit �oats.

Background Discontinuous Galerkin method for buoyancy-driven �ow Cargo hold sample results 3D development Software design

Discretization method - solving the discretized equations

A remedy for this is to use a �Jacobian-Free� method based on Krylov subspace
iterations (e.g. GMRES, BiCGSTAB), which only require the action of the
jacobian in the form of matrix-vector products:

K = span(Jδr, J2δr, J3δr, ...)

which can be approximated by a �nite di�erence:

Jv ≈ [F(u + εv)− F(v)]/ε

This enables a solution method for the non-linear system that doesn't require ever
explicitly forming the Jacobian, and instead only requires the evaluation of the
RHS of the ODE.

This is the Jacobian-free Newton-Krylov (JFNK) method:
Take a Newton step from the previous iterate.
Approximately solve the linear system using a matrix-free Krylov method.
Repeat until desired convergence is reached, and move to the next physical time
step.

Current solver uses a damped Newton line-search for the non-linear systems
coupled with a GMRES Krylov method for the linear systems.

Background Discontinuous Galerkin method for buoyancy-driven �ow Cargo hold sample results 3D development Software design

1D test case

1D Poisson test case to illustrate accuracy vs computational cost:

d2u

dx2
= −20 + aφ′′ cosφ− aφ′2 sinφ

a = 0.5, φ(x) = 20πx3
(4)

Background Discontinuous Galerkin method for buoyancy-driven �ow Cargo hold sample results 3D development Software design

1D test case

Figure : Close up of a single element with a 9th order polynomial basis.

Background Discontinuous Galerkin method for buoyancy-driven �ow Cargo hold sample results 3D development Software design

1D test case

For an ideal numerical method, computational cost is linearly proportional to the
number of unknowns (degrees of freedom).

e.g. 10 cells with 10 quadrature nodes compared to 50 cells with 2 quadrature
nodes.

The end result is achieving equivalent accuracy with less computational expense
or higher accuracy at similar computational expense compared to traditional �nite
volume methods.

Figure : Error for varying order of accuracy with constant DOFs on 1D test case.

Background Discontinuous Galerkin method for buoyancy-driven �ow Cargo hold sample results 3D development Software design

Test case - Isentropic vortex

(a) Coarse mesh for vortex case. (b) Initial vorticity.

Background Discontinuous Galerkin method for buoyancy-driven �ow Cargo hold sample results 3D development Software design

Test case - Isentropic vortex

Non-dissipative vorticity convection is essential for these simulations.

Test case of Yee et al (1999) for a convecting vortex is an exact solution for the
compressible Euler equations. Free-stream conditions are

ρ = 1, u = u∞, v = v∞, p = 1

with an initial perturbation

(du, dv) =
β

2π
exp

(
1− r2

2

)
[−(y − y0), (x − x0)]

T = 1−
(γ − 1)β2

8γπ2
exp(1− r2)

ρ = T
1

γ−1

p = ργ

for vortex center (x0, y0), and distance from center r =
√

(x − x0)2 + (y − y0)2.

Background Discontinuous Galerkin method for buoyancy-driven �ow Cargo hold sample results 3D development Software design

Test case - Isentropic vortex - 1st order (c.f. 2nd order FV)

Figure : Vortex transport over 35 characteristic lengths, O(∆x).

Background Discontinuous Galerkin method for buoyancy-driven �ow Cargo hold sample results 3D development Software design

Test case - Isentropic vortex - 2nd order

Figure : Vortex transport over 35 characteristic lengths, O(∆x2).

Background Discontinuous Galerkin method for buoyancy-driven �ow Cargo hold sample results 3D development Software design

Test case - Isentropic vortex - 3rd order

Figure : Vortex transport over 35 characteristic lengths, O(∆x3).

Background Discontinuous Galerkin method for buoyancy-driven �ow Cargo hold sample results 3D development Software design

Test case - Isentropic vortex - 4th order

Figure : Vortex transport over 35 characteristic lengths, O(∆x4).

Background Discontinuous Galerkin method for buoyancy-driven �ow Cargo hold sample results 3D development Software design

Test case - Isentropic vortex order of accuracy

L2 norm of kinetic energy losses for isentropic vortex convection.

Figure : Solution accuracy versus grid re�nement, for levels h, h/2, and h/4.

Background Discontinuous Galerkin method for buoyancy-driven �ow Cargo hold sample results 3D development Software design

AIAA 2016 2D cargo hold results

Figure : 1st, 2nd, and 3rd order 2D cargo hold.

Background Discontinuous Galerkin method for buoyancy-driven �ow Cargo hold sample results 3D development Software design

AIAA 2016 2D cargo hold results

Uncertainy Quanti�cation for Cargo Hold Fires, DeGennaro, Lohry, Martinelli, &
Rowley, 57th AIAA Structures, Structural Dynamics, and Materials Conference, San
Diego CA, Jan. 2016.

Two objectives of this study:
Assess the feasibility of using DG methods for buoyancy-driven �ows,
Use uncertainty quanti�cation techniques to analyze statistical variations in �ows.

Background Discontinuous Galerkin method for buoyancy-driven �ow Cargo hold sample results 3D development Software design

AIAA 2016 2D cargo hold results

The mock �re sources were chosen to vary based on 2 parameters: �re strength
and location.

Fire location was chosen to vary between the centerline and the far right wall,
exploiting the symmetry of the geometry.
Fire strength was chosen to vary between a weak, slowly rising plume and a faster
rising plume.

5× 5 parameter sweep performed for these 2 parameters.
Simulations performed with 3rd order elements (10 nodes per 2D cell) with
approximately 1,500 triangular cells, or 15,000 nodes. All boundary conditions are
isothermal non-slip walls. Time integration by 3rd order backward di�erence
formula (BDF).

Figure : Flow driven by a heat source in a 2D cross-section. Colormap shown is temperature
normalized by the initial bulk temperature.

Background Discontinuous Galerkin method for buoyancy-driven �ow Cargo hold sample results 3D development Software design

AIAA 2016 2D cargo hold results

Time evolution of temperature �eld:

(a) t = 2s. (b) t = 3s. (c) t = 4s.

(d) t = 5s. (e) t = 6s. (f) t = 7s.

Figure : Temperature �eld time evolution for Ts = 1.486, xs = 0.024 case.

Background Discontinuous Galerkin method for buoyancy-driven �ow Cargo hold sample results 3D development Software design

AIAA 2016 2D cargo hold results

Variation of �re source location:

(a) xs = 0.024m. (b) xs = 0.116m. (c) xs = 0.262m.

(d) xs = 0.387m. (e) xs = 0.480m.

Figure : Temperature �elds for Ts = 1.486 source at the 5 source locations, time t = 10s after
startup.

Background Discontinuous Galerkin method for buoyancy-driven �ow Cargo hold sample results 3D development Software design

AIAA 2016 2D cargo hold results

Variation of �re source temperature:

(a) Ts = 1.214. (b) Ts = 1.269. (c) Ts = 1.350.

(d) Ts = 1.431. (e) Ts = 1.486.

Figure : Temperature �elds at xs = 0.024m for the 5 values of temperature source, time
t = 10s after startup.

Background Discontinuous Galerkin method for buoyancy-driven �ow Cargo hold sample results 3D development Software design

AIAA 2016 2D cargo hold results

-1 0 1

1

1.2

(0.02, 1.21)

-1 0 1

1

1.2

(0.02, 1.27)

-1 0 1

1

1.2

(0.02, 1.35)

-1 0 1

1

1.2

(0.02, 1.43)

-1 0 1

1

1.2

(0.02, 1.49)

-1 0 1

1

1.2

(0.12, 1.21)

-1 0 1

1

1.2

(0.12, 1.27)

-1 0 1

1

1.2

(0.12, 1.35)

-1 0 1

1

1.2

(0.12, 1.43)

-1 0 1

1

1.2

(0.12, 1.49)

-1 0 1

1

1.2

(0.25, 1.21)

-1 0 1

1

1.2

(0.25, 1.27)

-1 0 1

1

1.2

(0.25, 1.35)

-1 0 1

1

1.2

(0.25, 1.43)

-1 0 1

1

1.2

(0.25, 1.49)

-1 0 1

1

1.2

(0.39, 1.21)

-1 0 1

1

1.2

(0.39, 1.27)

-1 0 1

1

1.2

(0.39, 1.35)

-1 0 1

1

1.2

(0.39, 1.43)

-1 0 1

1

1.2

(0.39, 1.49)

-1 0 1

1

1.2

(0.48, 1.21)

-1 0 1

1

1.2

(0.48, 1.27)

-1 0 1

1

1.2

(0.48, 1.35)

-1 0 1

1

1.2

(0.48, 1.43)

-1 0 1

1

1.2

(0.48, 1.49)

Figure : Time-averaged ceiling temperature distributions collected at the 25 quadrature nodes.
Each subtitle corresponds to the parameter pair (xS ,TS).

Background Discontinuous Galerkin method for buoyancy-driven �ow Cargo hold sample results 3D development Software design

3D isentropic vortex

Current work is on veri�cation and validation of the full 3D problem.

Figure : Comparison of mesh and 4th order elements.

Background Discontinuous Galerkin method for buoyancy-driven �ow Cargo hold sample results 3D development Software design

3D isentropic vortex

Background Discontinuous Galerkin method for buoyancy-driven �ow Cargo hold sample results 3D development Software design

3D isentropic vortex

Background Discontinuous Galerkin method for buoyancy-driven �ow Cargo hold sample results 3D development Software design

3D isentropic vortex

Background Discontinuous Galerkin method for buoyancy-driven �ow Cargo hold sample results 3D development Software design

3D driven cavity

Standard test case for viscous CFD. The �lid� of the cavity drives circulation
through viscous entrainment similar to the buoyancy-driven instabilities.

Figure : 354 cells 3D, 6x6x1 mesh.

Background Discontinuous Galerkin method for buoyancy-driven �ow Cargo hold sample results 3D development Software design

3D driven cavity

Figure : 1st order, 354 cells.

Background Discontinuous Galerkin method for buoyancy-driven �ow Cargo hold sample results 3D development Software design

3D driven cavity

Figure : 2nd order, 354 cells.

Background Discontinuous Galerkin method for buoyancy-driven �ow Cargo hold sample results 3D development Software design

3D driven cavity

Figure : 3rd order, 354 cells.

Background Discontinuous Galerkin method for buoyancy-driven �ow Cargo hold sample results 3D development Software design

3D driven cavity

Figure : 4th order, 354 cells.

Background Discontinuous Galerkin method for buoyancy-driven �ow Cargo hold sample results 3D development Software design

3D driven cavity

Figure : 3D DG solution with 354 cells c.f. Bruneau & Saad (2006), 1024× 1024 grid.

Background Discontinuous Galerkin method for buoyancy-driven �ow Cargo hold sample results 3D development Software design

3D driven cavity

Background Discontinuous Galerkin method for buoyancy-driven �ow Cargo hold sample results 3D development Software design

3D B707 cargo hold

Background Discontinuous Galerkin method for buoyancy-driven �ow Cargo hold sample results 3D development Software design

3D B707 cargo hold

Background Discontinuous Galerkin method for buoyancy-driven �ow Cargo hold sample results 3D development Software design

3D B707 cargo hold

Background Discontinuous Galerkin method for buoyancy-driven �ow Cargo hold sample results 3D development Software design

3D B707 cargo hold

Figure : FDS, Oztekin

Background Discontinuous Galerkin method for buoyancy-driven �ow Cargo hold sample results 3D development Software design

Software design aspects of a Discontinuous Galerkin solver

Aspects of the Discontinuous Galerkin solver:

Core �ow solver (it works):
3D spatial discretization with unstructured meshes and arbitrary order of accuracy,
cubature and quadrature rules for evaluating DG terms in the RHS, time
integration, . . .

Bells and whistles (it's useful for complex problems):
Interface to PETSc libraries to handle distributed memory parallelism, nonlinear and
linear algebra, Jacobian-Free Newton-Krylov methods.
Error-adaptive implicit time stepping.
User implemented boundary conditions and volumetric sources to model �res with
easy hooks via boost::dll.
Separation of discretization details from �ow equations: very simple to switch
between 1D, 2D, and 3D.
Implementation of traditional 2nd order �nite volume method.
Wide variety of LES and RANS models.

Background Discontinuous Galerkin method for buoyancy-driven �ow Cargo hold sample results 3D development Software design

Design

Major software components for DG solver:

Evaluation of right-hand-side spatial discretization for Discontinuous Galerkin
method.

Time integration

Nonlinear algebra solver

Linear algebra solver

Parallel communication

File i/o

User input options

User-de�ned boundary/volume functions

Logging of residuals, debugging info.

Lots of moving parts.

Background Discontinuous Galerkin method for buoyancy-driven �ow Cargo hold sample results 3D development Software design

Design patterns - mediator

Making everything work together without becoming a tightly coupled mess is
hard.

Spaghetti.

O(N) mutually interacting components require O(N2) communication complexity.

Background Discontinuous Galerkin method for buoyancy-driven �ow Cargo hold sample results 3D development Software design

Design patterns - mediator

The mediator 1 design pattern encapsulates interactions between classes, which
reduces coupling by requiring all communication go through one class.

Much easier to extend functionality and refactor existing code.
Many-to-many relationship becomes one-to-many.

Un-spaghetti'd mediator design pattern.

I prefer the term puppeteer from Rouson et al.2

1Design Patterns: Elements of Reusable Object-Oriented Software, 1994
2Scienti�c Software Design: The Object-Oriented Way, 2011

Background Discontinuous Galerkin method for buoyancy-driven �ow Cargo hold sample results 3D development Software design

Design - time stepping and algebraic solution hierarchy

Inheritance or composition where they make sense.

Time integrators/solvers totally decoupled from spatial residual evaluations:

Background Discontinuous Galerkin method for buoyancy-driven �ow Cargo hold sample results 3D development Software design

Design - right hand side evaluation

Inheritance or composition where they make sense.

Time integrators/solvers totally decoupled from spatial residual evaluations:

Background Discontinuous Galerkin method for buoyancy-driven �ow Cargo hold sample results 3D development Software design

Design patterns - registry

Mediator becomes responsible for creation and ownership of various objects.

I frequently use a singleton registry to store factory methods for abstract classes
with multiple implementations:

template <class ClassType >
class Registry {
public:

using Factory = ClassType* (*)(); // C++11 variant of typedef
static Registry <ClassType >& Get() {

static Registry <ClassType > instance;
return instance; }

void Register (const std:: string &name , Factory factory) {
registry.insert(std:: make_pair(name , factory)); }

...
private:

Registry () {}
~Registry () {}
std::map <std::string , Factory > registry;

Registry <SomeClasstype >::Get(). lookup("MyClassName") ...

Background Discontinuous Galerkin method for buoyancy-driven �ow Cargo hold sample results 3D development Software design

Design patterns - registry

Concrete classes can then register factories for themselves:

class BoundaryCondition {
public:
virtual void ApplyBC (...) = 0; ...

struct RegisterBC { // Functor for factory registration
RegisterBC(string type ,Registry <BoundaryCondition >:: Factory factory)

{Registry <BoundaryCondition >:: Get(). Register (type , factory);}
...
template <typename T >// A factory function for BCs
BoundaryCondition *BoundaryConditionFactory () {

return new T; }

class BCWallViscousIsothermal : public BoundaryCondition {...}
static RegisterBC isowallinstance("BCWallViscousIsothermal",

BoundaryConditionFactory <BCWallViscousIsothermal >);

// Returns a pointer to BC object of given name.
auto Registry <BoundaryCondition >::Get()

.lookup("BCWallViscousIsothermal");

Extension of these factory methods also enables potentially complex initialization
on creation (RAII).

Background Discontinuous Galerkin method for buoyancy-driven �ow Cargo hold sample results 3D development Software design

Unit testing

I'm a big proponent of as much automated testing and test-driven development
as possible.

Test complexity in CFD codes ranges from very small scale unit tests to full scale
engineering simulation tests.

Small-scale unit test: Function for the 1D Legendre polynomial used frequently
for interpolation and numerical integration:

Eigen :: VectorXd LegendrePolynomial(const Eigen:: VectorXd& x,
const unsigned int N);

Unit test, here checking accuracy of the 4th order polynomial to the analytical
equivalent:

TEST(PolynomialInterpolation ,Legendre){
double tol = 1e-10;
unsigned int npoints = 20;
unsigned int Norder = 4;
Eigen :: VectorXd xn;
xn.setLinSpaced(npoints ,-1,1);
auto lpoly = LegendrePolynomial(xn,Norder);
for (unsigned int i=0; i!= npoints; ++i){

EXPECT_NEAR(
1/8*(35* pow(xn(i) ,4.0) -30* pow(xn(i) ,2.0)+3.0) , lpoly(i),tol);

...

Background Discontinuous Galerkin method for buoyancy-driven �ow Cargo hold sample results 3D development Software design

Unit testing

Test for an RK4 time integration scheme:

class RungeKutta4 : public TimeIntegrator {
void Solve(TimeIntegrableRHS* rhs ,

const Matrix& y0,
Matrix& soln);

Testing a time integrator on a full CFD problem isn't necessary.

Knowing that RK4 should be able to exactly integrate a 4th order ODE, set up a
mock problem y ′ = t4 from 0 to 10:

class RK4TestProblem : public TimeIntegrableRHS {
void EvalRHS(const Matrix& y,const double t,Matrix& soln){
soln=pow(t ,4.0); }

...
TEST_F(TimeIntegration ,RK4){ ...
y0 = 0; t0 = 0; tfinal = 10;
RK4Integrator -> Solve(RK4Test , t0, tfinal , y0 , soln);
EXPECT_NEAR(pow(t ,5.0)/5.0 , soln , tolerance);

Background Discontinuous Galerkin method for buoyancy-driven �ow Cargo hold sample results 3D development Software design

Unit testing

More complex integration example covering more code, testing a nonlinear algebra
solver, which utlizes a Newton solver combined with a Krylov linear algebra solver.

Solve nonlinear system f (x , y) = [x2 + y2 − 10; 2 ∗ x + y − 1] which has two
solutions, (−1, 3) and (9/5,−13/5):

class NonlinearSystemTest : public NonlinearSystem {
void EvalRHS(const Matrix& y,Matrix& soln){
soln (0) = x*x + y*y - 10;
soln (1) = 2*x + y - 1;

...
TEST(NonlinearAlgebra ,NewtonGMRES){
...
nonlinearsolver ->Solve(nonlinearsystem , initial_guess ,...)
EXPECT_NEAR(-1, soln(0), tol);
EXPECT_NEAR(3, soln(1), tol);

...
/* another test with different initial guess that

should recover other solution. */

Background Discontinuous Galerkin method for buoyancy-driven �ow Cargo hold sample results 3D development Software design

Unit testing

High level integration test example: Flow simulation of a cylinder at a given
Reynolds number. Quantities to test:

Zero mean lift.
Drag within experimental tolerances.
Strouhal number within tolerance.

Method of manufactured solutions: Write out an exact solution for NS, derive
the corresponding source terms to force that solution.

Very high level integration (or veri�cation and validation) tests are always
necesesary to show we can get the right answer on test problems.

Also provide broad regression testing.

They're of limited use for a developer: if the test simulation fails, where in the

code is the culprit?

Low level tests: Tells you precisely where in some procedural code you have an
error.

Medium level tests: Tests assumptions about the integration between various
moving parts.

High level tests: Make sure real engineering problems are correct.

Prefer writing automated tests over debugging.

Background Discontinuous Galerkin method for buoyancy-driven �ow Cargo hold sample results 3D development Software design

Unit testing

Subtle bene�t to lots of low level testing: Writing code that can be tested
results in cleaner interfaces.(Separation of concerns or single responsiblity

principle notions in software design.)

Very bad design of an RK method from a big production F90 code:

subroutine executeRkStage
! * executeRkStage executes one runge kutta stage.

use blockPointers
use constants
use flowVarRefState
use inputIteration
use inputPhysics
use inputTimeSpectral
use inputUnsteady
use inputDiscretization
use iteration
use inputPhysics

...

Source �le is 578 lines long, subroutine takes no arguments, relying entirely on 10
e�ectively global module, using 40+ of those global state variables.

Totally untestable, unreadable, unmaintainable, tightly coupled, error-prone,

unmodi�able, overly complicated code.

Background Discontinuous Galerkin method for buoyancy-driven �ow Cargo hold sample results 3D development Software design

Unit testing

Compared to a design of similar functionality from my DG code, but springing
from test-driven development:

// 5 stage 4th order low storage explicit RK scheme.
class LowStorageRK54 : public TimeIntegrator {
public:

void Solve(TimeIntegrableRHS* rhs , // object for evaluating RHS
const MatrixXd& f0, // f(t=0) initial condition
MatrixXd& soln , // f(t=tfinal) solution
MatrixXd& residual) // residual of last iteration

Totally self-contained time stepping.

No coupling to the physical problem or to the spatial discretization.

Works the same on a single scalar ODE for a unit test as it does on a 109

unknown CFD simulation running on 1,000 cores.

Background Discontinuous Galerkin method for buoyancy-driven �ow Cargo hold sample results 3D development Software design

Ongoing solver development

2D work completed:

Established that high-order-accurate discontinuous Galerkin methods can be used
for simulating buoyancy-driven �ows such as those seen in cargo hold �res, using
unstructured meshes suitable for arbitrary geometries.

Demonstrated the use of these simulations in an uncertainty quanti�cation
framework to aid in �re sensor placement.

Current work is on extending this to a 3D solver for full cargo hold simulation:

Functioning:
3D unstructured �ow solver, spatial discretization with arbitrary order of accuracy.
Parallel scaling.
Jacobian-Free Newton-Krylov for solution of non-linear algebra.
Implicit time integration for high order temporal accuracy and large time step
stability.
3D viscous e�ects

Work in progress:
Full testing of 3D buoyancy-driven e�ects.
Implementation of Large Eddy Simulation (LES) models.
Full cargo hold simulations for validation.
Direct quantitative comparisons between OpenFOAM/FDS and this DG work for
validation.

	Background
	Discontinuous Galerkin method for buoyancy-driven flow
	Cargo hold sample results
	3D development
	Software design

